Fast scene segmentation using multi-level feature selection
نویسندگان
چکیده
High time cost is the bottle-neck of video scene segmentation. In this paper we use a heuristic method called Sort-Merge feature selection to construct automatically a hierarchy of small subsets of features that are progressively more useful for segmentation. A novel combination of Fastmap for dimensionality reduction and Mahalanobis distance for likelihood determination is used as induction algorithm. Because these induced feature sets form a hierarchy with increasing classification accuracy, video segments can be segmented and categorized simultaneously in a coarse-fine manner that efficiently and progressively detects and refines their temporal boundaries. We analyze the performance of these methods, and demonstrate them in the domain of long (75 minute) instructional videos.
منابع مشابه
An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملFused Text Segmentation Networks for Multi-oriented Scene Text Detection
In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instanceaware segmentation perspective. We present Fused Text Segmentation Networks, which combine multi-level features during feature extracting as text instance may rely on finer feature expression compared to general objects. It detects and segments the text instance jointly and simultaneous...
متن کاملProbabilistic Classification of Image Regions using an Observation-Constrained Generative Approach
In generic image understanding applications, one of the goals is to interpret the semantic context of the scene (e.g., beach, office etc.). In this paper, we propose a probabilistic region classification scheme for natural scene images as a priming step for the problem of context interpretation. In conventional generative methods, a generative model is learnt for each class using all the availa...
متن کاملProbabilistic Classification of Image Regions using Unsupervised and Supervised Learning
In generic image understanding applications, one of the goals is to interpret the semantic context of the scene (e.g., beach, office etc.). In this paper, we propose a probabilistic region classification scheme for natural scene images as a priming step for the problem of context interpretation. In conventional generative methods, a generative model is learnt for each class using all the availa...
متن کامل